Towards a future experiment to measure BR($K^+ \rightarrow \pi^+ \nu \nu$)

Venelin Kozhuharov

for P326 collaboration

New Trends in High Energy Physics Conference Yalta-2005

OVERVIEW

- Why ?
 Where ?
- ► Who ?
- \succ How ?
- ► When ?

Conclusion

Why do we want to measure BR(K⁺ $\rightarrow \pi^+ \nu \nu$) ?

- $K \rightarrow \pi v v$ decays provide alternative method for determination of the apex of the unitarity triangle.
- The phase β derives from Z⁰-penguin diagrams ($\Delta S=1$) wheres in B in A(J/y K_s) originates in the B_d⁰ \overline{B}_{d}^{0} mixing box diagram ($\Delta B=2$)

$$\sin(2\beta)_{K \to \pi \nu \nu} = \sin(2\beta)_{B \to J/\Psi Ks}$$

• A deviation from the upper equation will be a clear indication of new physics

 $\begin{bmatrix} & & & \\$

Current situation

- $BR(K^+ \rightarrow \pi^+ \nu \nu) = 1.47^{+1.30}_{-0.89} \times 10^{-10}$
- Compatible with the SM

Where ?

Who will make the experiment?

P326 collaboration

CERN-SPSC-2005-013

SPSC-P-326

11.6.2005

Proposal to Measure

the Rare Decay $K^+ \to \pi^+ \nu \bar{\nu}$ at the CERN SPS

Signed by 94 physicists, 16 institutes Submitted to SPSC

> CERN, Dubna, Ferrara, Florence, Frascati, Mainz, Merced, Moscow, Naples, Perugia, Protvino, Pisa, Rome, Saclay, Sofia, Turin

• Collect ~80 K⁺ $\rightarrow \pi^+ \nu \nu$ events with

background $\approx 10\%$

- × 2 years of data taking
- **×** 10% acceptance
- × BR≈1x10⁻¹⁰
- ★ Losses (Dead time) $\approx 20\%$
- We need $\approx 5 \times 10^{12} \text{ K}^+$ decays per year

Experiment strategy

- Kaon decays in flight
- Unseparated K⁺ beam
- High Kaon momentum
 - High acceptance
- Reuse the NA48 underground hall, part of the beam setup and part of the detectors
 - P326 is not a continuation of NA48/2. It is a new experiment which will get its name ones it is approved.

- Unseparated beam not proton limited
- 60m decay volume
- Beam size:
 - 3.2 x 4.4 cm
 - 14 cm^2

	Current Beam	Beam – P326
Duty cycle (s/s)	4.8/16.8	4.8/16.8
Pulses per year	3x10⁵	3x10⁵
Protons/pulse	1x10 ¹²	3x10 ¹²
Beam acceptance (µsr)	0.4	16
Beam flux /pulse	5.5x10 ⁷	250x10 ⁷
K momentum (GeV/c)	60	75
K decays / year	1x10 ¹¹	48x10 ¹¹

- Beam momentum 75GeV/c. Chosen after investigation and optimizing π/K ratio, K decay flux and acceptance
 - RMS: $\Delta p/p = 1\%$

Beam spectrometer

Assuming 3s effective spill length ~1 GHz hadron beam 60MHz / cm²

Beam spot

Requirements

- Momentum resolution: <0.5%
- Angular resolution <17µrad
- Time resolution ~150ps per station
- Material budget $<<1\%X_0$ per station
- Should survive 1GHz hadron beam

Design: Hybrid detector

- 2 stations of hybrid silicon micropixels, measuring deflection inside achromatic magnet ensemble
- Minimal thickness is 0.4%X₀ per station
- Provides momentum and time measurement

- Very challenging analog+digital chip
- Solutions under investigation
- 300 µm thick detector+electronics
- 300x300µm sensors
- Custom high performance TDC ASIC
- Evaluating 0.25 against 0.13µm technology

Gigatracker: FTPC

- Micromegas gas chambers operated in TPC mode
- Used in NA48/2
 - Rate per micro-strip ~ 2 Mhz
 - Time resolution ~ 0.6 ns
 - Position resolution 70mm
- 20Mhz rate per strip in P326
- The long drift (600 ns) makes a standalone
 pattern recognition very difficult use also
 T_{drift1}
- Read-out with 1 GHz FADC

Edrift

Micromegas Gap 50 µm

P326

drift2

Downstream spectrometer

P326

∆ P_{*} GeV/c (Spectrometer 1)

- Double spectrometer measure momentum twice MNP33(1) MNP33(2) 2.3 m Z 5 m 5 m 10 m 205 m 7 m 7 m from the target Sp2 (Spectr Minimum material – minimal multiple scattering P_a GeV/c Reconstruction tails uncorrelated – redundancy
- Design: Straw Chambers

Straw tracker

- Straw can operate in vacuum
- Well known technology (ATLAS, COMPASS)
- Experience (JINR, Dubna)
- Double layers per view

- 4 views to construct a chambre
- Each half/layer consists of 112x9.8mm + 16x4.8mm diameter straws
- Small regions with only 1 or 2 coordinates

Background

Photon vetoes

• Requirements

- Suppression of K⁺-> $\pi^+\pi^0$, Kµ3, K⁺-> $\pi^+\gamma\gamma$,
- Inefficiency <10⁻⁴ for E_{γ} >100MeV (and <10⁻⁵ for E_{γ} >1GeV)
- Large Angle vetoes
 - Lead-scintillator sandwich calorimeter around the decay region
- Liquid-Krypton Calorimeter (LKR)
 - Use existing NA48 calorimeter as a photon veto
- Small Angle vetoes
 - Covering of the beam pipe

Large Angle Vetoes

•2 solutions under considered

- Pb/Sci 1mm/5mm > 80 layers ($16 X_0$),
- WLS readout, 20 p.e. per MIP
- Pb+Sci fibres modules with two-side readout ("spaghetti calorimeter").

•13 annular rings in vacuum

P326

- •Hermeticity 8.5 50mrad
- •Inefficiency budget:
- 10^{-4} for E_{γ}>100MeV
- 10^{-5} for E > 1GeV

LKR

- Main detector element for NA48/0/1/2
- 13212 cells of 2x2 cm² in liquid krypton
- High resolution
 - 250ps time resolution
 - 1mm spacial resolution
 - $(3.2\%/\sqrt{E [GeV]})$ energy resolution
- Noise about 90MeV per cluster

Inefficiency budget:

- $<10^{-5}$ for E_y>1GeV
- <10⁻⁵ electron ID inefficiency
- being tested with data

Read-out and cryogenics system upgrades needed

Small Angles Vetoes

In order SAC to work we need to deflect the beam from the z-axis !!!

- IRC Inner ring callorimeter
- SAC Coverage down to $\theta = 0^{\circ}$

2 solutions in consideration:

Shashlyk: Layers of Pb + scintillator (total 17 X_0)

PbWO₄ crystals

MAMUD

- Magnetized muon and hadron detector
 - π/μ separation for $K_{\mu 2}$ suppression
 - beam sweeping for SAC
- Design
 - Magnetized iron => 0.9 T field in the beam region
 - Instrumented by scintillators => muon rejection $\sim 10^{-5}$

2cm

IRON

1cm

Extruded Scintillators

4cm

RICH and CHOD

- RICH
 - Needed for additional π/μ separation
 - Design under study (Kplus-like)

CEDAR

- Differential Cerenkov counter with achromatic focus
- Requirement: K⁺ tagging together with CHOD allow to diminish the decay volume vacuum requirement by **1 order** of magnitude
- Two versions have been used in SPS
 - He-filled "North CEDAR"
 - N₂-filled "West CEDAR"

10

CEDAR West filled with H

L.Gatignon

$K^+ \rightarrow \pi^+ \nu \nu$ decay in P326 layout

PRELIMINARY

Decay	Type of rejection	Background/Signal	
Κ _{2π}	photon veto, kinematics	4.1 %	
Κ _{μ2}	μ particle ID, kinematics	1.9 %	
K _{e4}	photon veto, kinematics, PID	3.1 %	
3-tracks	charged veto, kinematics	1.5 %	
$\pi^+\pi^-\gamma$	photon veto, kinematics	2.0 %	
Κ _{μ2}	μ particle ID, photon veto	0.6 %	
$K_{e3}, K_{\mu3}$, others	photon veto, particle ID	negligible	
		Total: 13.2 %	

assuming SM branching

WHEN ?

- $\geq 3x10^5$ proton spills per year for fixed target experiments
- Fully compatible with approved COMPASS running, LHC filling and CNGS

Time schedule

- 2003: Working groups started
- 2004: Parasitic tests in NA48/2 beam Letter of Intent submitted
- 2005: Design and development of main detectors Proposal P326 submitted to SPSC
 Beam tests outside CERN (Frascati)
- 2006-2008: Construction, Installation, Tests
- 2009-2010: Data-taking

From Villars report

CERN-SPSC-2005-010 SPSC-M-730 February 28, 2005

3.3 Flavour Physics

There is a strong physics case for pursuing an ambitious program of kaon physics at CERN, exploiting the high-energy proton beams available at the SPS for rare *K*-decay in-flight measurements. Building on its expertise in high-intensity neutral and charged kaon beams and on the outstanding physics achievements of the NA48, NA48/1 and NA48/2 experiments in the last decade, CERN should remain in the future a major laboratory for kaon physics at the sensitivity frontier.

The possibility of a precise measurement of the $K \rightarrow \pi^+ \nu \nu$ transition is exciting. The goal is to detect more than 100 signal events over two years starting in 2009. The challenge is for experimental sensitivity to a *K*-decay BR of order 10⁻¹¹. A major upgrade of the present NA48/2 set-up would be necessary and the required R&D and detector developments should be supported. According to present studies this measurement appears globally competitive.

Conclusion

- We have found a lucky combination where a compelling physics case can be addressed with an existing accelerator, employing the infrastructure (i.e. civil engineering, hardware, some sub-systems) of an existing experiment
- P326: impressive opportunity to measure ≥ 80 K⁺→π⁺νν events in two years of data taking at CERN SPS
- Backgrounds are challenging, but under control
- Proposal submitted

SPARE SLIDES

Detector

• CEDAR

- Differential Cherenkov counter for positive kaon identification
- GIGATRACKER
 - To Track the beam before it enters the decay region
- ANTI
 - Photon vetoes surrounding the decay tank
- SPECTROMETER
 - 2 magnets + 6 straw chambers to track the kaon decay products
- RICH
 - For redundant muon/pion separation
- CHOD
 - Fast hodoscope to make a tight kaon-pion time coincidence (~100 ps)
- LKR
 - Forward photon veto and e.m. calorimeter
- MAMUD
 - Hadron calorimeter, muon veto and sweeping magnet
- SAC
 - Small angle photon vetoes

CKM matrix

	V(ud)	V(us)	۷(۱	ıb)			
/ _{скм} =	V(cd)	V(cs)	V(d	V(cb)			
	V(†d)	V(ts)	V(†	b)]		
H	c ₁₂ c ₁₃			s ₁₂ c ₁₃		s ₁₃ e ^{-ið}	
	-s ₁₂ c ₂₃ -c ₁₂ s ₂₃ s ₁₃ e ^{-ið}			c ₁₂ c ₂₃ -s ₁₂ s ₂₃ s ₁₃ e ^{-iδ}		s ₂₃ c ₁₃	
	s ₁₂ s ₂₃ -c ₁₂ c ₂₃ s ₁₃ e ^{-iδ}			-c ₁₂ s ₂₃ -s ₁₂ c ₂₃ s ₁₃ e ^{-ið}		c ₂₃ c ₁₃	

Wolfenstein representation

Kaon Rare Decays in the SM

P326 Simulation

Resolution – 8x10^{-3} GeV²/c⁴

Kaons@CERN:NA48

Direct CP-Violation established!

